Abstract

The Reactor Experiment for Neutrino Oscillation (RENO) has obtained a definitive measurement of the smallest neutrino mixing angle of θ13 by observing the disappearance of electron antineutrinos emitted from a nuclear reactor, excluding the no-oscillation hypothesis at 4.9 σ. From the deficit, the best fit value of sin22θ13 is obtained as 0.113±0.013(stat.)±0.019(syst.) based on a rate-only analysis. Antineutrinos from six 2.8 GWth reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors at 294 m and 1383 m, respectively, from the reactor array center. In the 229 day data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of the reactor antineutrinos in the far detector is 0.920±0.009(stat.)±0.014(syst.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.