Abstract

Twenty-two strains of the tobacco caterpillar, Spodoptera litura (F.) (Lepidoptera: Noctuidae), collected from groundnut crops of eight locations in Andhra Pradesh, India, between 1991 and 1996 were assayed in the F1 generation for resistance to commonly used insecticides. Resistance levels ranged as follows: cypermethrin, 0·2- to 197-fold; fenvalerate, 8- to 121-fold; endosulfan, 1-to 13-fold; quinalphos, 1- to 29-fold; monocrotophos, 2- to 362-fold and methomyl, 0·7- to 19-fold. In nearly all strains pre-treatment with the metabolic inhibitor, piperonyl butoxide, resulted in complete suppression of cypermethrin resistance (2- to 121-fold synergism), indicating that enhanced detoxification by microsomal P450-dependent monooxygenases was probably the major mechanism of pyrethroid resistance. Pre-treatment with the synergist DEF, an inhibitor of esterases and the glutathione S-transferase system, resulted in a 2- to 3-fold synergism with monocrotophos indicating that esterases and possibly glutathione S-transferases were at least to some extent contributing to organophosphate resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.