Abstract

The FPA-5800FS1 157-nm scanner installed at Selete has demonstrated a minimum resolution of 55 nm for line-and-space (L/S) patterns with a numerical aperture (NA) of 0.8. The scanner has been used for 65-nm-node device fabrication and will be used for 45-nm-node device development. The approximately 20% shorter wavelength in 157-nm lithography has several advantages compared to 193-nm immersion lithography. For example, assuming the same k1 value, 157-nm lithography, which has a 20% smaller NA, has a 25% larger depth of focus and better resolution in two-dimensional patterns, for which polarized illumination is not effective. This 157- nm immersion lithography has the potential to be used for 32-nm-node device fabrication with a k1 of 0.3 in combination with a high-refractive-index immersion fluid. To demonstrate the process feasibility of 157-nm immersion lithography, we developed a two-beam interferometric stepper with a high-quality F2 laser and used it and a commercial perfluoroether as an immersion fluid to print 60-nm L/S patterns with a steep cross-sectional profile. Development of an immersion fluid with a high refractive index and low optical absorption is critical issue for making 157-nm immersion lithography practical. We have identified several fluorinated polymers with high diffractive indices and will continue searching for suitable 157-nm immersion fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call