Abstract

Spin crossover compounds are a class of functional materials able to switch their spin state upon external stimuli. They were proposed as potential candidates for several technological applications that require highly controlled thin films and patterns. Here we present a critical overview of the most important approaches for thin film growth and patterning of spin-crossover compounds, giving special attention to Fe(II) based molecules, which are the most studied materials. We present both conventional approaches to thin film growth (Langmuir-Blodgett, constructive chemical approach, spin coating, drop casting and vacuum sublimation) and patterning (combined top-down/bottom-up method, soft and unconventional lithography). We critically discuss the application of thin film growth and fabrication techniques highlighting the most critical aspects and the perspectives opened by the recent progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.