Abstract
Weak lensing surveys are expected to provide direct measurements of the statistics of the projected dark matter distribution. Most analytical studies of weak lensing statistics have been limited to quasilinear scales as they relied on perturbative calculations. On the other hand, observational surveys are likely to probe angular scales less than 10 arcminutes, for which the relevant physical length scales are in the nonlinear regime of gravitational clustering. We use the hierarchical ansatz to compute the multi-point statistics of the weak lensing convergence for these small smoothing angles. We predict the multi-point cumulants and cumulant correlators up to fourth order and compare our results with high resolution ray tracing simulations. Averaging over a large number of simulation realizations for four different cosmological models, we find close agreement with the analytical calculations. In combination with our work on the probability distribution function, these results provide accurate analytical models for the full range of weak lensing statistics. The models allow for a detailed exploration of cosmological parameter space and of the dependence on angular scale and the redshift distribution of source galaxies. We compute the dependence of the higher moments of the convergence on the parameters Omega and Lambda and on the nature of gravitational clustering.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have