Abstract

We have studied the cosmic microwave background radiation by simulating the cosmic string network induced anisotropies on the sky. The large-angular size simulations are based on the Kaiser–Stebbins effect calculated from full cosmic-string network simulation. The small-angular size simulations are done by Monte-Carlo simulation of perturbations from a time-discretized toy model. We use these results to find the normalization of μ, the string mass per unit length, and compare this result with one needed for large-scale structure formation. We show that the cosmic string scenario is in good agreement with COBE, SK94, and MSAM94 microwave background radiation experiments with reasonable string network parameters. The predicted rms-temperature fluctuations for SK94 and MSAM94 experiments are Δ T/T=1.57×10-5 and Δ T/T=1.62×10-5, respectively, when the string mass density parameter is chosen to be Gμ=1.4×10-6. The possibility of detecting non-Gaussian signals using the present day experiments is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call