Abstract

We gathered hyperspectral images of natural, foliage-dominated scenes and converted them to human cone quantal catches to characterize the second-order redundancy present within the retinal photoreceptor array under natural conditions. The data are expressed most simply in a logarithmic response space, wherein an orthogonal decorrelation robustly produces three principal axes, one corresponding to simple changes in radiance and two that are reminiscent of the blue–yellow and red–green chromatic-opponent mechanisms found in the primate visual system. Further inclusion of spatial stimulus dimensions demonstrates a complete spatial decorrelation of these three cone-space axes in natural cone responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call