Abstract

In order to further study a previously observed relationship between polyamine (PA) content and changes in irradiation, we examined the level of free and bound PAs, the activity of transglutaminase (TGase, EC 2.3.2.13) and chlorophyll fluorescence in holm oak (Quercus ilex L.) leaves in response to different levels of light intensity and amount. A diurnal trend of free and bound putrescine (F-Put and B-Put, respectively) and TGase activity was observed in plants under natural conditions in the forest, with the highest value corresponding to the maximum light intensity and amount of light received by the leaves. In another set of experiments, potted Q. ilex plants in experimental fields were subjected to a range of periods of natural photosynthetic photon flux density (PPFD) by covering or not covering the whole trees. Under a natural photoperiod (uncovered leaves), B-Put content and TGase activity paralleled the diurnal PPFD pattern, reaching a maximum at the highest PPFD; prior to this maximum, free PAs showed a significant rise. Plants that were in darkness until midday and suddenly exposed to high light intensity showed enhanced TGase activity, resulting in the maximum accumulation of B-Put. The involvement of the accumulation of B-Put reflected in the changes of the B-Put/bound spermidine ratio during the photoprotective responses to high light stress in forest plants is discussed in relation to the chlorophyll fluorescence parameters observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.