Abstract

Absolute and conditional statistical properties of a pulse coherent Doppler lidar signal in a turbulent atmosphere are studied. Upon coherent receiving of optical fields scattered by a large number of particles, the lidar signal is shown to be a nonstationary non-Gaussian random process with Gaussian conditional statistical characteristics. The appearance of non-Gaussian properties of the signal is caused by correlation of turbulent fluctuations of the wind velocity field within the scattering volume. For the considered signal model, which corresponds to the single scattering approximation and is a sum of a large number of random variables, the central limit theorem is found to be untrue due to the statistical dependence of particles’ positions in a turbulent atmosphere. The results of numerical calculations show that, for a homogeneous and isotropic turbulence, the behavior of the signal statistics significantly depends on the size of the scattering volume and on the state of atmospheric turbulence. A Gaussian statistics is observed at small heights; with an increase in height, the non-Gaussian component becomes considerable in fluctuations of the lidar signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call