Abstract
A unified physically based microstructural representation of f.c.c. crystalline materials has been developed and implemented to investigate the microstructural behaviour of f.c.c. crystalline aggregates under inelastic deformations. The proposed framework is based on coupling a multiple-slip crystal plasticity formulation to three distinct dislocation densities, which pertain to statistically stored dislocations (SSDs), geometrically necessary dislocations (GNDs) and grain boundary dislocations. This interrelated dislocation density formulation is then coupled to a specialized finite element framework to study the evolving heterogeneous microstructure and the localized phenomena that can contribute to failure initiation as a function of inelastic crystalline deformation. The GND densities are used to understand where crystallographic, non-crystallographic and cellular microstructures form and the nature of their dislocation composition. The SSD densities are formulated to represent dislocation cell microstructures to obtain predictions related to the inhomogeneous distribution of SSDs. The effects of the lattice misorientations at the grain boundaries (GBs) have been included by accounting for the densities of the misfit dislocations at the GBs that accommodate these misorientations. By directly accounting for the misfit dislocations, the strength of the boundary regions can be more accurately represented to account for phenomena associated with the effects of the GB strength on intergranular deformation heterogeneities, stress localization and the nucleation of failure surfaces at critical regions, such as triple junctions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have