Abstract
This paper proposes a statistically matched wavelet based textured image coding scheme for efficient representation of texture data in a compressive sensing (CS) frame work. Statistically matched wavelet based data representation causes most of the captured energy to be concentrated in the approximation subspace, while very little information remains in the detail subspace. We encode not the full-resolution statistically matched wavelet subband coefficients but only the approximation subband coefficients (LL) using standard image compression scheme like JPEG2000. The detail subband coefficients, that is, HL, LH, and HH, are jointly encoded in a compressive sensing framework. Compressive sensing technique has proved that it is possible to achieve a sampling rate lower than the Nyquist rate with acceptable reconstruction quality. The experimental results demonstrate that the proposed scheme can provide better PSNR and MOS with a similar compression ratio than the conventional DWT-based image compression schemes in a CS framework and other wavelet based texture synthesis schemes like HMT-3S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.