Abstract

Tolerance is one of the most important parameters in design and manufacturing. Tolerance synthesis has a significant impact on manufacturing cost and product quality. In the international standards community two approaches for statistical tolerancing of mechanical parts are being discussed: process capability indices and distribution function zone. The distribution function zone (DFZone) approach defines the acceptability of a population of parts by requiring that the distribution function of relevant values of the parts be bounded by a pair of specified distribution functions. In order to apply this approach to statistical tolerancing, one needs a method to decompose the assembly level tolerance specification to obtain tolerance parameters for each component in conjunction with a corresponding tolerance-cost model. This paper introduces an optimization-based statistical tolerance synthesis model based on the DFZone tolerance specifications. A new tolerance-cost model is proposed and the model is illustrated with an assembly example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.