Abstract

The theory of the optimal formation of coherent and incoherent images is developed using the foundations of the statistical theory of optimization of radio engineering information-measuring systems. The main operations necessary for synthesizing optimal methods of spatio-temporal processing of functionally deterministic signals in on-board radio imaging radars with antenna arrays are shown. Models of radio engineering signals and noise have been developed. The statistical and correlation characteristics of spatio-temporal signals and noises in the area of their observation by antenna systems have been investigated. The technique for estimating the limiting errors of the measured characteristics of the studying media is presented. Using the developed theory, a new method for high-resolution radar imaging of the surface from a wide swath was obtained. This method has a new optimal observation mode combining the advantages of several terrain observation modes and fully complies with modern trends in the creation of cognitive radars with the possibility of restructuring the antenna pattern in space and adaptive receiving of reflected signals. The principles of construction and algorithmic support of high-precision airborne radars with an extended observation area are formulated. The effectiveness of the obtained results is investigated by simulation, taking into account the phenomenological approach to the description of electromagnetic fields and coherent images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call