Abstract
We present a detailed study of the distribution and of the internal structure of the inverted-V electron precipitation commonly detected in the 500 – 2000 km altitude range aboard the AUREOL-3 satellite. These structured precipitations are statistically observed inside the auroral oval with a maximum occurence in the nightside sector. They correspond to primary electron fluxes peaked at energies generally below 10 keV. It is shown that, as predicted by kinetic theories, most inverted-V structures present a clear relationship between the field-aligned current density carried by the 1 – 20 keV primary electrons and the potential drop inferred from particle distribution functions. Furthermore the study demonstrates the existence of strong electron heating, related to the energy gain, when the current density exceeds some threshold of about 1 – 5 μA ( m ) −2 .
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have