Abstract
In this article, we first verify the global well-posedness of the second order lattice systems with varying coefficients. Then we prove that the solution mappings form a continuous process on the time-dependent phase spaces and the process has a time-dependent pullback attractor. Afterwards, we establish that there exists a family of Borel probability measures carried by the time-dependent pullback attractor which possesses invariant property under the action of the process. Further, we formulate the definition of statistical solution for the addressed evolution equations on time-dependent phase spaces and prove its existence. Our results reveal that the statistical solution of the second order lattice systems with varying coefficients satisfies the Liouville theorem in Statistical Mechanics. Finally, we propose some interesting issues concerning the singular limiting behavior as the varying coefficients tend to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.