Abstract

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call