Abstract

High-resolution, high-Reynolds-number numerical solutions of fully three-dimensional, decaying, geostrophic turbulence are examined. The results include the demonstration of a substantial degree of similarity between geostrophic and two-dimensional turbulence: transfer of energy to larger scales; transfer of potential enstrophy to smaller scales; vanishing energy dissipation as the Reynolds number increases; the emergence and growth to dominance of isolated, coherent vortices; and a competition between the vortices and Rossby waves, with an associated horizontal anisotropy when the latter are dominant. Properties that are distinct to geostrophic turbulence include the following: approximate three-dimensional wavenumber isotropy, with significant departures on large scales due to boundedness of the domain and on smaller scales due to anisotropic spectrum transfer rates; insensitivity of solution properties to anisotropy or vertical inhomogeneity in the dissipation; persistence of vertical inhomogeneity; development of inhomogeneity due to solid vertical boundaries; and the processes of alignment, attachment, and vertical straining associated with the finite vertical extent of the coherent vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.