Abstract

Strongly nonlinear, rapidly rotating, stably stratified flow is called geostrophic turbulence. This subject, which blends ideas from chapters 2,4, and 5, is relevant to the large-scale flow in the Earth’s oceans and atmosphere. The quasigeostrophic equations form the basis of the study of geostrophic turbulence. We view the quasigeostrophic equations as a generalization of the vorticity equation for two-dimensional turbulence to include the important effects of stratification, bottom topography, and varying Coriolis parameter. Thus the theory of geostrophic turbulence represents an extension of the theory of two dimensional turbulence. However, its richer physics and greater applicability to real geophysical flows make geostrophic turbulence a much more interesting and important subject. This chapter offers a very brief introduction to the theory of geostrophic turbulence. We illustrate the principal ideas by separately considering the effects of bottom topography, varying Coriolis parameter, and density stratification on highly nonlinear, quasigeostrophic flow. We make no attempt at a comprehensive review. In every case, the theory of geostrophic turbulence relies almost solely on two now-familiar components: a conservation principle that energy and potential vorticity are (nearly) conserved and an irreversibility principle in the form of an appealing assumption that breaks the time-reversal symmetry of the exact (inviscid) dynamics. This irreversibility assumption takes a great many superficially dissimilar forms, fostering the misleading impression of a great many competing explanations for the same phenomena. However, broadminded analysis inevitably reveals that these competing explanations are virtually equivalent. We begin by considering the quasigeostrophic flow of a single layer of homogeneous fluid over a bumpy bottom. No case better illustrates how diverse forms of the irreversibility principle lead to the same conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.