Abstract

In this study, sequential strategy based design was applied to optimize the microalgae, Pavlova lutheri mass culture conditions and fermentation conditions of the cultured algae by proteolytic yeast Candidia rugopelliculosa to obtain small peptide chains. This optimization of culture and fermentation conditions by response surface methodology (RSM) finally leads to effective purification of a bioactive peptide MPGPLSPL (793.01Da) with hydroxyl radical scavenging activity. Collectively, these results indicated that microalgae P. lutheri can enhance the hydroxyl radical inhibiting effect through protein hydrolysis process under RSM optimal condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.