Abstract

The influence of a colored three-level input noise (trichotomous noise) on the spike generation of a perfect integrate-and-fire (PIF) model of neurons is studied. Using a first-passage-time formulation, exact expressions for the Laplace transform of the output interspike interval (ISI) density and for the statistical moments of the ISIs (such as the coefficient of variation, the skewness, the serial correlation coefficient, and the Fano factor) are derived. To model the anomalous subdiffusion that can arise from, e.g., the trapping properties of dendritic spines, the model is extended by including a random operational time in the form of an inverse strictly increasing Lévy-type subordinator, and exact formulas for ISI statistics are given for this case as well. Particularly, it is shown that at some parameter regimes, the ISI density exhibits a three-modal structure. The results for the extended model show that the ISI serial correlation coefficient and the Fano factor are nonmonotonic with respect to the input current, which indicates that at an intermediate value of the input current the variability of the output spike trains is minimal. Similarities and differences between the behavior of the presented models and the previously investigated PIF models driven by dichotomous noise are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call