Abstract

The behavior of a stochastic perfect integrate-and-fire (PIF) model of neurons is considered. The effect of temporally correlated random activity of synaptic inputs is modeled as a combination of an asymmetric dichotomous noise and a random operation time in the form of an inverse strictly increasing Lévy-type subordinator. Using a first-passage-time formulation, we find exact expressions for the output interspike interval (ISI) statistics. Particularly, it is shown that at some parameter regimes the ISI density exhibits a multimodal structure. Moreover, it is demonstrated that the coefficient of variation, the serial correlation coefficient, and the Fano factor display a nonmonotonic dependence on the mean input current μ, i.e., the ISI's regularity is maximized at an intermediate value of μ. The features of spike statistics, analytically revealed in our study, are compared with previously obtained results for a perfect integrate-and-fire neuron model driven by dichotomous noise (without subordination).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call