Abstract

Following the Daubert ruling in 1993, forensic evidence based on fingerprints was first challenged in the 1999 case of the U.S. versus Byron C. Mitchell and, subsequently, in 20 other cases involving fingerprint evidence. The main concern with the admissibility of fingerprint evidence is the problem of individualization, namely, that the fundamental premise for asserting the uniqueness of fingerprints has not been objectively tested and matching error rates are unknown. In order to assess the error rates, we require quantifying the variability of fingerprint features, namely, minutiae in the target population. A family of finite mixture models has been developed in this paper to represent the distribution of minutiae in fingerprint images, including minutiae clustering tendencies and dependencies in different regions of the fingerprint image domain. A mathematical model that computes the probability of a random correspondence (PRC) is derived based on the mixture models. A PRC of 2.25 times10-6 corresponding to 12 minutiae matches was computed for the NIST4 Special Database, when the numbers of query and template minutiae both equal 46. This is also the estimate of the PRC for a target population with a similar composition as that of NIST4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.