Abstract

The study of fingerprint individuality aims to determine to what extent a fingerprint uniquely identifies an individual. Recent court cases have highlighted the need for measures of fingerprint individuality when a person is identified based on fingerprint evidence. The main challenge in studies of fingerprint individuality is to adequately capture the variability of fingerprint features in a population. In this paper hierarchical mixture models are introduced to infer the extent of individualization. Hierarchical mixtures utilize complementary aspects of mixtures at different levels of the hierarchy. At the first (top) level, a mixture is used to represent homogeneous groups of fingerprints in the population, whereas at the second level, nested mixtures are used as flexible representations of distributions of features from each fingerprint. Inference for hierarchical mixtures is more challenging since the number of unknown mixture components arise in both the first and second levels of the hierarchy. A Bayesian approach based on reversible jump Markov chain Monte Carlo methodology is developed for the inference of all unknown parameters of hierarchical mixtures. The methodology is illustrated on fingerprint images from the NIST database and is used to make inference on fingerprint individuality estimates from this population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.