Abstract
Timely detection of forest diseases is an important task for their prevention and spread limitation. The usage of satellite imagery provides capabilities for large-scale forest monitoring. Machine learning models allow to automate the analysis of these data for anomaly detection indicating diseases. However, selecting informative features is key to building an effective model. In this work, the application of Bhattacharyya distance and Spearman’s rank correlation coefficient for feature selection from satellite images was investigated. A greedy algorithm was applied to form a subset of weakly correlated features. The experiment showed that selected features allow for improving the classification quality compared to using all spectral bands. The proposed approach demonstrates effectiveness for informative and weakly correlated feature selection and can be utilized in other remote sensing tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.