Abstract
Cancellation or delay of non-essential medical interventions, limitation of face-to-face assessments or outpatient attendance due to lockdown restrictions, illness or fear of hospital or healthcare centre visits, and halting of research to allow diversion of healthcare resources to focus on the pandemic led to the interruption of many clinical trials during the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic. Appropriate analysis approaches are now required for these interrupted trials. In trials with long follow-up and longitudinal outcomes, data may be available on early outcomes for many patients for whom final, primary outcome data were not observed. A natural question is then how these early data can best be used in the trial analysis. Although recommendations are available from regulators, funders, and methodologists, there is a lack of a review of recent work addressing this problem. This article reports a review of recent methods that can be used in the setting of the analysis of interrupted clinical trials with longitudinal outcomes with monotone missingness. A search for methodological papers published during the period 2020-2023 identified 43 relevant publications. We categorised these articles under the four broad themes of missing value imputation, modelling and covariate adjustment, simulation and estimands. Although motivated by the interruption due to SARS-CoV-2 and the resulting disease, the papers reviewed and methods discussed are also relevant to clinical trials interrupted for other reasons, with follow-up discontinued.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.