Abstract
The statistical mechanics of arbitrary holonomic scleronomous systems subjected to arbitrary external forces is described by specializing the Lagrange and Hamilton equations of motion to those of the Brownian motion on a manifold. In this context, the Klein‐Kramers and Smoluchowski equations are derived in covariant form, and it is demonstrated that these equations have equilibrium solutions corresponding to the Gibbs distribution, in agreement with standard thermodynamics. At last, the Langevin dynamics corresponding to the Smoluchowski limit is found to exactly correspond to the Brownian motion on a smooth manifold. These results find significant applications in the study of several statistical properties of constrained molecular assemblies (e.g. polymers) of interest in chemistry, physics and biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.