Abstract

Semiconductor quantum dots are promising building blocks for quantum communication applications. Although deterministic, efficient, and coherent emission of entangled photons has been realized, implementing a practical quantum repeater remains outstanding. Here we explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade. We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks. We identify the critical, statistically distributed device parameters for entanglement swapping based on two sources. A numerical model for benchmarking the consequences of device fabrication, dynamic tuning techniques, and statistical effects is developed, in order to bring the realization of semiconductor-based quantum networks one step closer to reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.