Abstract

Entangled photon sources are crucial for quantum optics, quantum sensing, and quantum communication. Semiconductor quantum dots generate on-demand entangled photon pairs via the biexciton-exciton cascade. However, the pair of photons are emitted isotropically in all directions, thus limiting the collection efficiency to a fraction of a percent. Moreover, strain and structural asymmetry in quantum dots lift the degeneracy of the intermediate exciton states in the cascade, thus degrading the measured entanglement fidelity. Here, we propose an approach for generating a pair of entangled photons from a semiconductor quantum dot by application of a quadrupole electrostatic potential. We show that the quadrupole electric field corrects for the spatial asymmetry of the excitonic wave function for any quantum dot dipole orientation and fully erases the fine-structure splitting without compromising the spatial overlap between electrons and holes. Our approach is compatible with nanophotonic structures such as microcavities and nanowires, thus paving the way towards a deterministic source of entangled photons with high fidelity and collection efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call