Abstract

When learners encode sequential patterns and generalize their knowledge to novel instances, are they relying on abstract or stimulus-specific representations? Research on artificial grammar learning (AGL) has shown transfer of learning from one stimulus set to another, and such findings have encouraged the view that statistical learning is mediated by abstract representations that are independent of the sense modality or perceptual features of the stimuli. Using a novel modification of the standard AGL paradigm, we obtained data to the contrary. These experiments pitted abstract processing against stimulus-specific learning. The findings show that statistical learning results in knowledge that is stimulus-specific rather than abstract. They show furthermore that learning can proceed in parallel for multiple input streams along separate perceptual dimensions or sense modalities. We conclude that learning sequential structure and generalizing to novel stimuli inherently involve learning mechanisms that are closely tied to the perceptual characteristics of the input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.