Abstract
ABSTRACTAudio sampling of the environment can provide long-term, landscape-scale presence-absence data to model populations of sound-producing wildlife. Automated detection systems allow researchers to avoid manually searching through large volumes of recordings, but often produce unacceptable false positive rates. We developed methods that allow researchers to improve template-based automated detection using a suite of statistical learning algorithms when false positive rates are problematic. To test our method, we acquired 668 hours of recordings in the Sonoran Desert, California USA between March 2016 and May 2017, and created spectrogram cross-correlation templates for three target avian species. We trained and tested five classification algorithms and four performance-weighted ensemble classifier methods on target signals and false alarms from March 2016, and then selected high-performing ensemble classifiers from the train/test phase to predict the class of new detections thereafter. For three target species, our ensemble classifiers were able to identify 98%, 81%, and 100% of false alarms compared with the baseline template detection system, and comparative positive predictive values improved from 6% to 69%, 87% to 95%, and 2% to 77%. We show that statistical learning approaches can be implemented to mitigate false detections acquired via template-based automated detection in automated acoustic wildlife monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.