Abstract

A combination of classical molecular dynamics (MD) simulation and ab initio fragment molecular orbital (FMO) calculation was applied to a complex formed between the main protease of the new coronavirus and the inhibitor N3 to calculate interactions within the complex while incorporating structural fluctuations mimicking physiological conditions. Namely, a statistical evaluation of interaction energies between N3 and amino acid residues was performed by processing a thousand of structure samples. It was found that relative importance of each residue is altered by the structural fluctuation. The MD-FMO combination should be promising to simulate protein related systems in a more realistic way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.