Abstract
A novel in silico drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the tert-butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.