Abstract
The sense of one's own body is a pillar of self-consciousness and could be investigated by inducing human illusions of artificial objects as part of the self. Here, we present a nonhuman primate version of a rubber-hand illusion that allowed us to determine its computational and neuronal mechanisms. We implemented a video-based system in a reaching task in monkeys and combined a casual inference model to establish an objective and quantitative signature for the monkey's body representation. Similar to humans, monkeys were more likely to perceive an external object as part of the self when the dynamics (spatial disparity) and the features (shape and structure) of visual (V) input was closer to proprioceptive (P) signals. Neural signals in the monkey's premotor cortex reflected the strength of illusion and the likelihood of misattributing the illusory hand to oneself, thus, revealing a cortical representation of body ownership.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.