Abstract

Humans make decisions about food every day. The visual system provides important information that forms a basis for these food decisions. Although previous research has focused on visual object and category representations in the brain, it is still unclear how visually presented food is encoded by the brain. Here, we investigate the time-course of food representations in the brain. We used time-resolved multivariate analyses of electroencephalography (EEG) data, obtained from human participants (both sexes), to determine which food features are represented in the brain and whether focused attention is needed for this. We recorded EEG while participants engaged in two different tasks. In one task, the stimuli were task relevant, whereas in the other task, the stimuli were not task relevant. Our findings indicate that the brain can differentiate between food and nonfood items from ∼112 ms after the stimulus onset. The neural signal at later latencies contained information about food naturalness, how much the food was transformed, as well as the perceived caloric content. This information was present regardless of the task. Information about whether food is immediately ready to eat, however, was only present when the food was task relevant and presented at a slow presentation rate. Furthermore, the recorded brain activity correlated with the behavioral responses in an odd-item-out task. The fast representation of these food features, along with the finding that this information is used to guide food categorization decision-making, suggests that these features are important dimensions along which the representation of foods is organized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call