Abstract

M-estimators offer simple robust alternatives to the maximum likelihood estimator. The density power divergence (DPD) and the logarithmic density power divergence (LDPD) measures provide two classes of robust M-estimators which contain the MLE as a special case. In each of these families, the robustness of the estimator is achieved through a density power down-weighting of outlying observations. Even though the families have proved to be useful in robust inference, the relation and hierarchy between these two families are yet to be fully established. In this paper, we present a generalized family of divergences that provides a smooth bridge between DPD and LDPD measures. This family helps to clarify and settle several longstanding issues in the relation between the important families of DPD and LDPD, apart from being an important tool in different areas of statistical inference in its own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.