Abstract
Varying coefficient error-in-covariables models are considered with surrogate data and validation sampling. Without specifying any error structure equation, two estimators for the coefficient function vector are suggested by using the local linear kernel smoothing technique. The proposed estimators are proved to be asymptotically normal. A bootstrap procedure is suggested to estimate the asymptotic variances. The data-driven bandwidth selection method is discussed. A simulation study is conducted to evaluate the proposed estimating methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.