Abstract
In many statistical downscaling methods, atmospheric variables are chosen by using a combination of expert knowledge with empirical measures such as correlations and partial correlations. In this short communication, we describe the use of a fast, sparse variable selection method, known as RaVE, for selecting atmospheric predictors, and illustrate its use on rainfall occurrence at stations in South Australia. We show that RaVE generates parsimonious models that are both sensible and interpretable, and whose results compare favourably to those obtained by a non-homogeneous hidden Markov model ( Hughes et al., 1999).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.