Abstract

This paper studies the statistical characteristics of a unique long-term high-resolution precipitable water vapor (PWV) data set at Darwin, Australia, from 12 March 2002 to 28 February 2011. To understand the convective precipitation processes for climate model development, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) program made high-frequency radar observations of PWV at the Darwin ARM site and released the best estimates from the radar data retrievals for this time period. Based on the best estimates, we produced a PWV data set on a uniform 20-s time grid. The gridded data were sufficient to show the fractal behavior of precipitable water with Hausdorff dimension equal to 1.9. Fourier power spectral analysis revealed modulation instability due to two sideband frequencies near the diurnal cycle, which manifests as nonlinearity of an atmospheric system. The statistics of PWV extreme values and daily rainfall data show that Darwin’s PWV has El Nino Southern Oscillation (ENSO) signatures and has potential to be a predictor for weather forecasting. The right skewness of the PWV data was identified, which implies an important property of tropical atmosphere: ample capacity to hold water vapor. The statistical characteristics of this long-term high-resolution PWV data will facilitate the development and validation of climate models, particularly stochastic models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call