Abstract
Traffic prediction is challenging due to the stochastic nonlinear dependencies in spatiotemporal traffic characteristics. We introduce a Graph Convolutional Gated Recurrent Unit Network (GC-GRU-N) to capture the critical spatiotemporal dynamics. Using 15-min aggregated Seattle loop detector data, we recontextualize the prediction challenge across space and time. We benchmark our model against Historical Average, LSTM, and Transformers. While Transformers outperformed other models, our GC-GRU-N came in a close second with notably faster inference time — six times quicker than Transformers. We offer a comprehensive comparison of all models based on training and inference times, MAPE, MAE, and RMSE. Furthermore, we delve into the spatial and temporal characteristics of each model’s performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.