Abstract

The spectral fluctuations and transition intensity fluctuations in the excited-state quantum phase transitions (ESQPTs) have been investigated within the framework of the interacting boson model (IBM) by adopting three statistical measures, including the nearest neighbor level spacing distribution P(S) measuring the chaoticity (regularity) in energy spectra, the Δ3(L) statistics of Dyson and Mehta measuring the spectral rigidity and the intensity distribution P(y) measuring the chaoticity (regularity) in B(E0) transitions. The results indicate that that the ESQPT as a function of the excitation energy may occur as a transition from regular (or semiregular) to highly chaotic if only the associated whole spectrum is chaotic, which fits most of the deformed situations in the IBM including those in the U(5)–SU(3) and SU(3)–O(6) transitional regions. Otherwise, the ESQPT will appear as a transition from regular (or semiregular) to regular such as the cases in the U(5)–O(6) transitional region or those on the ‘Alhassid–Whelan arc’, which represents a nearly regular parameter region connecting the U(5) and SU(3) limits in the IBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call