Abstract

Recent advances in experimental techniques for complex systems and the corresponding theoretical findings show that in many cases random parametrization of the diffusion coefficients gives adequate descriptions of the observed fractional dynamics. In this paper we introduce two statistical methods which can be effectively applied to analyze and estimate parameters of superstatistical fractional Brownian motion with random scale parameter. The first method is based on the analysis of the increments of the process, the second one takes advantage of the variation of the trajectories of the process. We prove the effectiveness of the methods using simulated data. Also, we apply it to the experimental data describing random motion of individual molecules inside the cell of E.coli. We show that fractional Brownian motion with Weibull-distributed diffusion coefficient gives adequate description of this experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.