Abstract

The high frequencies of millimeter wave (mm-wave) bands have been recognized for the fifth generation (5G) and beyond wireless communication networks. However, the radio propagation channel at high frequencies can be largely influenced by rain attenuation, especially in tropical regions with high rainfall intensity. In this paper, we present the results of rainfall intensity and rain attenuation in tropical regions based on one-year measurement campaign. The measurements were conducted from September 2018 until September 2019 at 21.8 GHz (K-band) and 73.5 GHz (E-band) in Malaysia. The rainfall intensity was collected using three rain gauges installed along a 1.8 km link. The rain attenuation is computed from the difference between the measured minimum received signal level (RSL) during clear sky and rain conditions. The measured rain rate and rain attenuation distributions are then analysed and benchmarked with several previous measurements and well-known prediction models such as the ITU-R P. 530-17. The rainfall rate results showed that the best agreement between the measured rainfall rate in Malaysia and the ITU-R PN.837-1 prediction value for Zone P is up to 0.01% of time (99.99% of time agrees well and only disagrees for 0.01% of time). For the E-band, the maximum measured rain attenuation exceeding 0.03% of the year is around 40.1 and 20 dB for 1.8 and 0.3 km links, respectively, at the maximum rain rate of 108 mm/h. For the K-band, the maximum rain attenuation exceeding 0.01% of the year is around 31 dB for the 1.8 km link. Finally, the rain rates exceeding 108 and 180 mm/h at 73.5 and 21.8 GHz, respectively, along the 1.8 km path caused an outage on our measurement setup. The rain rate of 193 mm/h and above caused an outage for the 0.3 km E-band link. The experimental data as well as the presented data analysis can be utilized for efficient planning and deployments of mm-wave wireless communication systems in tropical regions.

Highlights

  • Radio communication frequencies are being expanded to millimeter waves in order to occupy a larger bandwidth

  • Both links are located in Universiti Teknologi Malaysia (UTM), Kuala Lumpur (KL), Malaysia, with radio propagation LOS path length of 1.8 km

  • The rain attenuation at 73.5 GHz E-band and 21.8 GHz K-band was calculated based on the measured minimum received signal level (RSL) along 1.8 km experimental links

Read more

Summary

INTRODUCTION

Radio communication frequencies are being expanded to millimeter waves (mm-wave) in order to occupy a larger bandwidth. Numerous measurements have been conducted to study the effects of rain on both satellite and terrestrial communications. Several studies on the effect of rain have been conducted in Europe on the microwave band from 10 to 40 GHz [8]–[10]. In France, rain rate and attenuation were measured at 20.2 GHz based on Amazonas 3 satellite links over one year (2017) [9]. The rain attenuation was calculated based on two slant satellite links (19.698 and 39.402 GHz) propagation experiments in Madrid, Spain over three years (2014-2017) [10]. The rain induced scintillation was studied based on attenuation measurement over a one year period during 2011 and 2012, from MEASAT3 satellite at Ku-band (12-18 GHz) in Malaysia [12].

RELATED WORK
RAIN ATTENUATION
MOUPFOUMA MODEL
SILVA MELLO MODEL
RAIN ATTENUATION MEASUREMENT
POST PROCESSING OF RAIN RATE AND RAIN ATTENUATION DATA
Findings
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call