Abstract

Angularly resolved Thomson scattering is a novel extension of Thomson scattering, enabling the measurement of the electron velocity distribution function over many orders of magnitude. Here, details of the theoretical basis of the technique and the instrument designed for this measurement are described. Angularly resolved Thomson-scattering data from several experiments are shown with descriptions of the corresponding distribution functions. A reduced model describing the distribution function is given and used to perform a Monte Carlo analysis of the uncertainty in the measurements. The electron density and temperature were determined to a precision of 12% and 21%, respectively, on average, while all other parameters defining the distribution function were generally determined to better than 20%. It was found that these uncertainties were primarily due to limited signal to noise and instrumental effects. Measurements with this level of precision were sufficient to distinguish between Maxwellian and non-Maxwellian distribution functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.