Abstract
In this work, we model a radiofrequency discharge of hydrogenated silicon nitride in a capacitive coupled plasma reactor using Maxwellian and non-Maxwellian electron energy distribution function. The purpose is to investigate whether there is a real advantage and a significant contribution using non-Maxwellian electron energy distribution function rather than Maxwellian one for determining the fundamental characteristics of a radiofrequency plasma discharge. The results show the evolution of the non-Maxwellian electron energy distribution function, the mobility and the diffusion coefficient required to determine the fundamental characteristics of the radiofrequency plasma discharge of a hydrogenated silicon nitride deposit at low pressure and low temperature, between the two electrodes of the capacitive coupled plasma reactor. By comparing these results using non-Maxwellian electron energy distribution function with those calculated using the Maxwellian one, we conclude that the use of non-Maxwellian electronic energy distribution function is more efficient for describing the evolution of a radiofrequency plasma discharge in a capacitive reactor, which will improve the quality of the deposition of thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.