Abstract

Consideration is given to the analysis of the large-sample second-order properties of multiple signal classification (MUSIC) and subspace rotation (SUR) methods, such as ESPRIT, for sinusoidal frequency estimation. Explicit expressions for the covariance elements of the estimation errors associated with either method are derived. These expressions of covariances are then used to analyze and compare the statistical performances of the MUSIC and SUR estimation (SURE) methods. Both MUSIC and SURE are based on the eigendecomposition of a sample data covariance matrix. The expressions for the estimation error variances derived are used to study the dependence of MUSIC and SURE performances on the dimension of the data covariance matrix used. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.