Abstract
Aircraft gas turbine engines during the operation are exposed to damage of flowing parts. The elements of the engine design, appreciably determining operational characteristics are rotor blades. Character of typical damages for various types of engines depends on appointment and a geographical place of the aircraft operation on which one or another engine is installed. For example, the greatest problem for turboshaft engines operated in the dusty air conditions is erosive wear of a rotor blade airfoil. Among principal causes of flowing parts damages of bypass engine compressors are foreign object damages. Independently there are the damages caused by fatigue of a rotor blade material at dangerous blade mode. Pieces of the ice formed in the input unit, birds and the like can also be a source of danger. The foreign objects getting into the engine from runway are nuts, bolts, pieces of tire protectors, lock-wire, elements from earlier flying off aircraft, etc. The entry of foreign objects into the engine depends on both an operation mode (during the operation on the ground, on takeoff, on landing roll using the reverse and so on), and the aircraft engine position. Thus the foreign objects entered into the flowing path of bypass engine damage blade cascade of low and high pressure. Foreign objects entered into the flowing part of the engine with rotor blades result in dents on edges and blade shroud, deformations of edges, breakage, camber of peripheral parts and are distributed nonlinear on path length (steps). The article presents the results of the statistical analysis of three types engine compressors damageability over the period of more than three years. Damages are divided according to types of engines in whole and to their separate steps, depths and lengths, blades damage location. The results of the analysis make it possible to develop recommendations to carry out the optical-visual control procedures.
Highlights
Aircraft gas turbine engines during the operation are exposed to damage of flowing parts
Character of typical damages for various types of engines depends on appointment and a geographical place of the aircraft operation on which one or another engine is installed
The greatest problem for turboshaft engines operated in the dusty air conditions is erosive wear of a rotor blade airfoil
Summary
Попадание посторонних предметов в двигатель зависит как от режима работы Среди основных причин повреждений проточных частей компрессоров турбореактивных двухконтурных двигателей выделяются повреждения от попадания посторонних предметов. Попадание посторонних предметов в двигатель зависит как от режима работы (при работе на месте, при гонке, на взлете, при пробеге на посадке с использованием реверсивного устройства и т.п.), так и от расположения двигателя на воздушном судне [1,2,3,4,5]. Cтатья ставит целью дать представление об актуальном распределении эксплуатационных повреждений рабочих лопаток компрессоров ТРДД трех двигателей разных производителей (далее – тип 1, тип 2 и тип 3) за период около трех с половиной лет
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have