Abstract

The needs to rapid manufacture of automotive components have led to the extensive uses of high-speed drilling in hole-making operation. However, issues such as uncontrollable thrust force and hole quality need to be addressed effectively in order to have full benefit of high-speed machining. Modeling the effect of drilling parameters on the machining responses can be a useful approach in controlling the thrust force and surface quality of the hole. This article reports on the development of mathematical models for thrust force ( Ft) and surface roughness ( Ra) during high-speed drilling of Al–Si alloy using uncoated carbide tools. Central composite design coupled with response surface methodology was used to predict the Ft and Ra values in relation to the primary machining variables such as cutting speed and feed rate. Second-order polynomial models were developed for both responses, and the adequacy of models was verified by analysis of variance. Results show the goodness of response surface methodology in the development of mathematical models in explaining the variation of thrust force and surface roughness by relating them to the variations of cutting parameters. In the developed models, linear effects of cutting parameters have the highest contribution to the thrust force model, while their quadratic effects are the significant terms influencing the surface roughness. Consequently, the optimum cutting condition was predicted at the high and low levels of cutting speed and feed rate, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call