Abstract

Fused deposition modeling (FDM) is a type of additive manufacturing that falls under the category of material extrusion. Building an object using FDM involves layer-by-layer selective deposition of melted material along a predetermined path. However, FDM parts are inherently anisotropic, meaning their mechanical properties vary depending on the direction of loading, which makes them prone to failure under transverse loads. This study introduces a novel post-processing technique to enhance the mechanical properties of FDM parts. Unlike conventional FDM printing, this study explores a post-processing technique where TiO2-infused resin is injected into the internal voids of printed parts to reinforce their structure. Compared to unfilled counterparts, resin filled structures exhibited significant improvements in tensile strength (up to 40%) and impact energy (up to 28%). A 20% infill density was found to offer a cost-effective balance between material usage and performance, while 2% wt. TiO2 achieved the optimal balance between reinforcement and dispersion, exceeding the performance gains of other concentrations. SEM analysis confirmed effective TiO2 dispersion at lower concentrations, leading to smoother surfaces and potentially improved mechanical properties. This technique presents a promising approach for fabricating high-performance FDM parts with enhanced strength and toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call