Abstract
Accurate channel state information (CSI) is crucial for optimizing wireless communication systems. In scenarios with varying user-to-base station angles, the angle-dependent coherence time impacts conventional pilot strategies. Due to small angles, the coherence time of the user decreases dramatically because of doppler shift, which causes an increase in the number of pilots. We introduces an innovative sub-block design approach for systems with different user angles. This method harmonizes coherence time of high and low-angle users, while maintaining a constant pilot count. This not only improves spectral efficiency but also ensures accurate channel estimation. Through simulations, we demonstrate the effectiveness of our approach in enhancing both spectral efficiency upt to 10%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10 \\%$$\\end{document} and CSI precision. This breakthrough contributes to the advancement of channel estimation techniques in scenarios with angle-dependent coherence time, offering practical benefits to wireless communication systems.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have