Abstract

We study the invariant measures of infinite systems of stochastic differential equations (SDEs) indexed by the vertices of a regular tree. These invariant measures correspond to Gibbs measures associated with certain continuous specifications, and we focus specifically on those measures which are homogeneous Markov random fields. We characterize the joint law at any two adjacent vertices in terms of a new two-dimensional SDE system, called the “local equation”, which exhibits an unusual dependence on a conditional law. Exploiting an alternative characterization in terms of an eigenfunction-type fixed point problem, we derive existence and uniqueness results for invariant measures of the local equation and infinite SDE system. This machinery is put to use in two examples. First, we give a detailed analysis of the surprisingly subtle case of linear coefficients, which yields a new way to derive the famous Kesten-McKay law for the spectral measure of the regular tree. Second, we construct solutions of tree-indexed SDE systems with nearest-neighbor repulsion effects, similar to Dyson’s Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.